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(4) Statement of the problem studied. 
 
 The goal of this ARO grant, DAAD19-01-1-0346, was to explore the fundamental principles involved in 
the formation of a new generation of highly selective biosensors based upon the principle of multivalent ligand-
receptor attachment.  The specific approach was to employ supported lipid bilayers and high throughput 
microfluidic devices to understand at the molecular level the principles of device and platform design. 
 
(5) Summary of the most important results 
 
 

Below I will explain the progress that we have made in developing on-chip multivalent assays over the 
last three years.  The object was to exploit our devices for obtaining binding data for ligand-receptor 
interactions as a function of membrane chemistry.  These devices are ideally suited for this task because of their 
high throughput capabilities and vastly decreased reagent volume requirements.  In fact, only 2 µL of protein 
solution are needed to collect each data point and all the points on a binding curve can be obtained 
simultaneously.  We have created spatially addressed bilayer arrays with different concentrations of membranes 
components (lipids, ligands, cholesterol, etc) at each address.  A schematic example of a simple 2 x 2 bilayer 
array is shown below (Figure 1).  Each membrane address contains 2,4-dinitrophenyl phosphatidylethanolamine  
 

Figure 1.  A spatially 
addressed array of 
lipid bilayers 
containing an antibody 
binding ligand (shown 
in green) and varying 
amounts of cholesterol 
at each address. 

 
well as various 
concentrations of 
cholesterol.  Anti-2,4 
dinitrophenyl antibodies 

(DNP-PE) as bind specifically to the DNP-PE ligands; however, the amount of cholesterol in each membrane is 
crucial for determining the extent of binding.  As can be seen in Figure 2, 
antibody binding increases substantially as the cholesterol content is increased.  
For example, there is appropriately twice as much antibody 
 
Figure 2.  A 4 x 4 array of fluorescently labeled antibodies bound to 
membrane with various ligand densities and cholesterol content. 
 
bound to the membrane at 1 mol% DNP when 20 mol% of cholesterol is 
present as opposed to the conditions under which the membrane contains no 
cholesterol.  We have performed spectroscopy and microscopy experiments 
which demonstrated that this effect was caused by an increased availability of 
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the DNP-PE ligand above the membrane surface as cholesterol was added.  Therefore, the exact membrane 
chemistry is crucial to the ligand's orientation and binding avidity. 
 In order to obtain quantitative binding strengths for ligand-receptor interactions, we have developed 
bilayer coated microfluidic devices. These lab-on-a-chip platforms allowed both the surface bound membrane 
as well as the aqueous solution above it to be precisely and separately controlled in each channel.  A schematic 
diagram of a two-channel device as well as a total internal reflection fluorescence micrograph from a twelve-
channel device are shown in Figure 3.  A device consists of a glass support bonded to a lithographically 
patterned polydimethylsiloxane (PDMS) mold in order to form microfluidic channels.  The channels are coated 
with phospholipid membranes over the entire surface (shown in green).  This is done by flowing in the 

appropriate vesicle 
solutions and washing 
out excess materials.  
In the working device 
(3b), the bilayers 
contained DNP-PE 
ligands, which could 
then bind with 
fluorescently labeled 
anti-DNP antibodies 
that were 
subsequently 
introduced.  The 
surface binding 
process was followed 
in all channels 
simultaneously by 
total internal 

reflection fluorescence microscopy (TIRFM), a technique which discriminates between surface bound species 
and those in bulk solution.  Control and background experiments demonstrated that the vast majority of the 
antibodies was indeed specifically bound to the interface under the conditions that were probed.  A high 
concentration of antibody was added to the left most channel and a subsequently lower concentration was added 
to each neighboring channel (left to right).  Quantitative information was obtained by plotting the intensity of 

surface bound antibodies in each channel against the concentration 
of IgG introduced (Figure 4). 
 
Figure 4.  Plot of total fluorescence intensity from membrane 
bound antibodies vs. the concentration of antibodies applied in 
the bulk solution. 
 
This is in essence a "one-shot" binding curved for a membrane 
associated ligand-receptor binding process.  Fitting the curve to a 

Langmuir isotherm, 
][1

][
cK

cK

Aapp

Aapp

+
=Θ , allows the determination of 

the apparent association constant, KAapp.  In this case [c] represent the concentration of antibody in bulk solution 
while Θ is surface coverage, a value which varies between 0.0 and 1.0.  A least squares fit to the data provides 
the value of KAapp.  This value, however, is usually reported as the equilibrium dissociation constant, KDapp, 
which is 1/KAapp.  In the particular case shown above the value is slightly less than 2 µM, which is in excellent 
agreement with literature values.  Significantly, this value was determined rapidly, on-chip, with just a few 
microliters of solution.  The signal-to-noise is also very high because taking all data simultaneously eliminates 
time dependent fluctuations which can affect sequentially performed assays.   
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Figure 3.  (a)  Schematic representation of a bilayer coated microfluidic 
channel array.  (b) A working bilayer coated array containing various 
concentrations of fluorescently labeled antibodies. 



 In order to further improve our on-chip membrane binding assays, we exploited the very regular laminar 
flow of microfluidics to create a concentration dilutor on-chip.  This allows a single high concentration of 
protein to be converted into an array of concentrations in a single step (Figure 5).  Thus binding curves can be 
achieved from a single initial protein solution injection.  As a spin-off to this technology, we have now used this 
device to develop a new assay for bacterial chemotaxis in association with Michael Manson's laboratory.  
  
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  (a) Schematic diagram of a diffusion diluter in which two solutions are introduced, allowed to 
mix by diffusion as they flow downstream side-by-side, and separated into microchannels with distinct 
compositions. (b) A fluorescence false color image of the microchannels from a working diffusion diluter. 
 
 Similar to the concentration dependent experiments, it was also deemed desirable to be able to run many 
experiments simultaneously at a variety of different temperatures. To this end we developed a temperature 
gradient microfluidic device that allows dozens of individual nanoliter sized samples to be analyzed in parallel.  
This allows us to obtained one-shot DNA melting point curves, Arrhenius plots, and binding curves in a straight 
forward manner (Figure 6).  As a result of having this bioanalytical technique we now are able to monitor 
protein folding and crystallization processes in a high-throughput fashion as a function of temperature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  (a) Schematic diagram of the platform employed in temperature gradient microfluidics.  The 
device operates by placing two brass tubes underneath a linear array of microchannels.  (b) 
Thermocouple measurements of the temperature inside a working temperature gradient device as a 
function of position. 
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 A key advance made in our laboratory was the development of a macroscope for looking at large fields 
of bilayers on a chip.  This development will make possible the use of standard pin arrays to transfer vesicle 

solutions to a patterned field of hydrophilic boxes that have the 
identical registry.  A first demonstration of the macroscope was made 
for a 7 x 9 array of egg PC bilayers with two different dyes patterned 
alternately at each address (Figure 7).  Such large arrays can now be 
employed to rapidly screen a variety of different membrane chemistries 
for their effects on multivalent protein binding.  
 
Figure 7.  A fluorescence image of a spatially addressed array of 9 x 
7 egg PC bilayers on chip.  The center to center distance between 
adjacent membranes is 1 mm.  Therefore the image shows 
approximately a 63 mm2 area. 
 

 
A final advance in early 2004 was the formation of air-stable fluid phospholipid bilayers.  This report 

constituted the first time a fluid bilayer can been made on monitored in air.  The advance was verified by 
fluorescence recovery after photobleaching and fluorescence microscopy. The process works by using a coat 
protein specifically bound to the bilayer via ligand-receptor interactions.. A schematic diagram of the system is 
shown in Figure 8. 

 
 

 
Figure 8.  (top) The introduction of the air/water interface 
destroys a standard bilayer from the edge, peeling the 
membrane away in vesicle sections (note: some lipids may also 
form a monolayer at the air surface).  When the same bilayer 
is protected by a close-packed and specifically bound protein 
monolayer (bottom), it survives the air/water interface.  The 
proteins may serve to mechanically “pin” down the edge of the 
bilayer, allowing air to pass over the surface without 
disrupting the overall lipid ordering. 
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